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Motivation
• Machine learning (ML) has received great attention in the 

quantum community these days.

Classical ML 
for quantum physics/chemistry

Enhancing ML 
with quantum computers

The goal      : 
Solve challenging quantum 

many-body problems 
better than 

traditional classical algorithms

The goal      : 
Design quantum ML algorithms 

that yield 
significant advantage 

over any classical algorithm

“Solving the quantum many-body problem with artificial neural networks.” Science 355.6325 (2017): 602-606. 
"Learning phase transitions by confusion." Nature Physics 13.5 (2017): 435-439. 
"Supervised learning with quantum-enhanced feature spaces." Nature 567.7747 (2019): 209-212.



Motivation
• Yet, many fundamental questions remain to be answered.

Classical ML 
for quantum physics/chemistry

Enhancing ML 
with quantum computers

The question      : 
How can ML be more useful 

than non-ML algorithms?

The question      : 
What are the advantages of 

quantum ML in general?

“Solving the quantum many-body problem with artificial neural networks.” Science 355.6325 (2017): 602-606. 
"Learning phase transitions by confusion." Nature Physics 13.5 (2017): 435-439. 
"Supervised learning with quantum-enhanced feature spaces." Nature 567.7747 (2019): 209-212.



General Setting
• In this work, we focus on training an ML model to predict 

                                         , 
where  is a classical input,  is an unknown CPTP map, and  is an observable. 

• This is very general: includes any function computable by a quantum computer.

x ↦ fℰ(x) = Tr(Oℰ(|x⟩⟨x|))
x ℰ O

Example 1 Example 2
Predicting outcomes of 
physical experiments

Predicting ground state properties 
of a physical system

 parameters describing the experimentx :

 the physical process in the experimentℰ :

 what the scientist measureO :

 parameters describing a physical systemx :

 a process for preparing ground stateℰ :

 the property we want to predictO :



General Setting

Classical setting 

• Classical data from each experiment. 

• Each query begins with a choice of 

classical input  and ends with an 

arbitrary POVM measurement. 

• A prediction model  is 

created after learning.

x

h(x) ≈ fℰ(x)

Classical processing

Classical processing

…
Classical processing

Measurement

Measurement

Classical output

Classical input

Prediction model stored in
classical memory

E

E



General Setting

Quantum setting 

• Quantum data from each experiment. 

• Each query consists of a quantum 

access to the CPTP map  (quantum 

input + quantum output). 

• A prediction model  is 

created after learning.

ℰ

h(x) ≈ fℰ(x)

Entangled

Entangled

Quantum processing

Quantum processing

…
Quantum processing

Coherent quantum 
state output

Coherent quantum 
state input

Prediction model stored in
quantum memory

E

E



General Setting

The setup is closely related to Quantum Algorithmic Measurements by Aharonov, Cotler, Qi
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Classical Setting Quantum Setting

Classical processing

Classical processing

…

Classical processing

Measurement

Measurement

Quantum processing

Quantum processing

…

Quantum processing

Coherent quantum 
state output

Coherent quantum 
state input

Classical output

Classical input
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classical memory

Prediction model stored in
quantum memory

E
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E



Main Questions

Information-theoretic aspect:
Do we need significantly more experiments in the classical setting 
compared to the quantum setting to learn  ?fℰ(x)

[1] Information-theoretic bounds on quantum advantage in machine learning, arXiv:2101.02464.

Computational aspect:

Could classical ML use data to efficiently compute   
even if  is hard to compute with a classical computer?

fℰ(x) = Tr(Oℰ(|x⟩⟨x|))
fℰ(x)

[2] Power of data in quantum machine learning, arXiv:2011.01938.



Information-theoretic aspect

[1] Information-theoretic bounds on quantum advantage in machine learning, arXiv:2101.02464.

Consider any observable , any family of CPTP maps  with -qubit 
input and -qubit output, and any input distribution . 

Suppose a quantum ML uses  queries to the unknown CPTP map  to 
learn a prediction model  that achieves a prediction error of  

                                           

then there is a classical ML using  to learn a prediction model 
 that achieves a prediction error of  

                                          

O ℱ = {ℰ} n
m 𝒟

NQ ℰ
hQ(x)

𝔼x∼𝒟 hQ(x) − fℰ(x)
2

≤ ϵ,
NC ≤ 𝒪(mNQ/ϵ)

hC(x)
𝔼x∼𝒟 hC(x) − fℰ(x)

2
≤ 𝒪(ϵ) .

Theorem (Huang, Kueng, Preskill; 2021 [1])
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Concept/hypothesis class 

in statistical learning theory
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Average prediction error
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Implication of  NC ≤ 𝒪(mNQ/ϵ)

[1] Information-theoretic bounds on quantum advantage in machine learning, arXiv:2101.02464.

• Quantum ML setting may likely only be available far in the future. 
(need quantum memory to store data) 

• Classical ML setting is readily available. (only need classical 
memory to store data) 

• Learning from classical data can be as powerful as learning from 
coherent quantum data.



Non-Implication of  NC ≤ 𝒪(mNQ/ϵ)

[1] Information-theoretic bounds on quantum advantage in machine learning, arXiv:2101.02464.

• ML models trained on classical computers are computationally as powerful 
as those running on quantum computers? 

• No! We only consider data efficiency, not computational complexity. 

• We can consider quantum algorithms for the classical setting (learning 
only from classical data stored in classical memory). 

• Quantum computers can potentially optimize/compute faster.

[2] Power of data in quantum machine learning, arXiv:2011.01938.



Implication of  NC ≤ 𝒪(mNQ/ϵ)

[1] Information-theoretic bounds on quantum advantage in machine learning, arXiv:2101.02464.

• Learning from classical data can be as powerful as learning from 
coherent quantum data. 

• ML models running quantum computers can train/predict faster 
than classical computers. 

• Boosts our hope for using near-term quantum devices + classical 
computers to address challenging quantum problems in physics/
chemistry (more to come in my next paper).
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Exponential advantage

[1] Information-theoretic bounds on quantum advantage in machine learning, arXiv:2101.02464.

• The theorem holds only for average-case prediction error. 

• Other measures of prediction error (e.g., worst-case) 
admits provable exponential advantage. 
 
     instead of  max

x
h(x) − fℰ(x)

2
𝔼x∼𝒟 h(x) − fℰ(x)

2
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Computational aspect
• The formal difference between classical ML and non-ML algorithm is 

that ML algorithm can learn from data. 

• We define a complexity class for classical algorithm that could learn 
from sampled data (BPP/samp). 

• BPP/samp is a restricted class of P/poly.

[2] Power of data in quantum machine learning, arXiv:2011.01938.

n

n-1

n+1

Tn = {(xi, yi)}

Tn�1 = {(xi, yi)}

Tn+1 = {(xi, yi)}

Classical ML
algorithm with data

(BPP/samp)

P/poly

n

n-1

n+1 an+1 = 0100 . . . 0100

an = 1010 . . . 110

an�1 = 111 . . . 001

+ Advice+ Training data

BPP ( P/poly

Problem
Size

Classical
Algorithm

(BPP)
BPP/samp

Quantum
Computation

(BQP)

P/poly



Computational aspect
• Classical algorithms learning from data could solve problems 

that can not be solved by non-ML algorithms. 

• This is only true when data can not be computed in BPP. 
(such as data from quantum experiments)

[2] Power of data in quantum machine learning, arXiv:2011.01938.
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• For example,  = single-particle -site Fermionic state,  
 = general interacting Hamiltonian evolution. 

• Because  is a general  unitary transformation, 
predicting property of  is hard classically.

|ψinit⟩ n
U

U 2n × 2n

U|ψinit⟩

|ψinit⟩ = α|100⟩ + β|010⟩ + γ|001⟩

n = 3

U|ψinit⟩ = αU|100⟩ + βU|010⟩ + γU|001⟩ =
2n

∑
i=1

ci|i⟩

⟨ψinit|U†OU|ψinit⟩ = ∑
i

∑
j

cicj⟨i|O|j⟩

Computational power of data

[1] Power of data in quantum machine learning, arXiv:2011.01938.



• For example,  = single-particle -site Fermionic state,  
 = general interacting Hamiltonian evolution. 

• However, given ~  training data, predicting property of  can be done 
easily on a classical computer (equiv. to learning quadratic func.).

|ψinit⟩ n
U

n2 U|ψinit⟩

|ψinit⟩ = α|100⟩ + β|010⟩ + γ|001⟩

n = 3

U|ψinit⟩ = αU|100⟩ + βU|010⟩ + γU|001⟩ =
2n

∑
i=1

ci|i⟩

⟨ψinit|U†OU|ψinit⟩ = ∑
i

∑
j

cicj⟨i|O|j⟩ = (α, β, γ)A(α, β, γ)T

Computational power of data

[1] Power of data in quantum machine learning, arXiv:2011.01938.



Prediction error after training a 
kernel ML model

•  is the function learned by a kernel ML model. 

• If  is small, then the kernel model can accurately predict . 
(irrespective of whether  is hard to compute without training data) 

• Quantum advantage happens when  is large and  is small.

gK(x)

sK f(x) = Tr(U†OUρ(x))
f(x)

sC sQ

𝔼x |gK(x) − fℰ(x) | ≤ 𝒪 ( sK

N )

, where .sK = ∑
ij

(K−1)ij fℰ(xi)fℰ(xj) ≥ 0 Kij = k(xi, xj)

[1] Power of data in quantum machine learning, arXiv:2011.01938.

N: training data size



Geometric difference
•  where . 

• If  is small, no function  exists where the quantum ML outperforms classical ML. 

• If  is large, a function  exists where the quantum ML outperforms classical ML.

sC ≤ g(KC | |KQ)2sQ g(KC | |KQ) = ∥ KQK−1
C KQ∥∞ ≥ 1

g(KC | |KQ) f

g(KC | |KQ) f

 measures the difference between 
how quantum ML vs classical ML sees the relation between data.

g(KC | |KQ)

[1] Power of data in quantum machine learning, arXiv:2011.01938.



Classical ML
can learn &
predict well

Potential
quantum

advantage

 
Dissecting quantum prediction advantage

Geometry test

Dimension test for 
Quantum space

  

Classical ML predicts similar or 
better than the quantum ML

 min(d,Tr(O2)) ⌧ N  

Likely
Hard

to learn

Classical ML
can learn
any……… UQNN

Data set exists with potential 
quantum advantage

sC / N,

sQ ⌧ N
 sC ⌧ NElse  Else

Complexity test for
specific function/label 

QK likely fails,
Classical ML
can work/fail

Can be 
constructed

gCQ /
p
NgCQ ⌧

p
N

A flowchart for understanding 
quantum advantage

[2] Power of data in quantum machine learning, arXiv:2011.01938.



Limitation of 
Quantum kernel methods

• When the quantum states  for the training set span a large dimension 

quantum Hilbert space, all inputs are too far apart, so  

                    and   . 

• This means classical ML can often compete or outperform quantum kernel 

methods in learning any quantum models. 

• One could rigorously show that for simple quantum models, quantum kernel 

need exponential number of data, while classical ML only need linear. 

• We see classical ML outperforming quantum kernel throughout numerics.

ρ(xi)

KQ ≈ I gCQ = ∥ KQK−1
C KQ∥∞ ≈ 1

   Prediction error bound for QK: 𝔼x |g(x) − Tr(OUρ(x)) | ≤ 𝒪
min(d, Tr(O2))

N
+

log(1/δ)
N



• Large quantum Hilbert space 
dimension makes quantum ML suffers 
more than classical ML. 

• Projects quantum states back to 
classical space, e.g. using reduced 
observable or classical shadow [1]. 

• Define kernel in the classical space. 

• We call this the projected quantum 
kernel (PQK).

One solution

AB
D

C

E

Quantum kernel (QK)Classical ML

F
G H

H F

A
D

B

d-dim. training set space(d ≤ N: training set size)

E

C

G

Embed into
quantum 

Hilbert space

A

B

D

C

E

F
G H

Project back
to classical space

Projected quantum kernel (PQK)

g measures the geometric 
difference, e.g., betw.           
and           .

[1] Predicting many properties of a quantum system from very few measurements



• PQK requires quantum computer to 
compute (by going through QK). 

• PQK results in much higher geometric 
difference. (because QK has ) 

• Simple-to-prove rigorous advantage 
in a learning problem based on 
discrete logarithm [1]. 

• The proof that QK can learn the 
above problem is much more 
complicated [1].

g ≈ 1

Projected quantum kernel

AB
D

C

E

Quantum kernel (QK)Classical ML

F
G H

H F

A
D

B

d-dim. training set space(d ≤ N: training set size)

E

C

G

Embed into
quantum 

Hilbert space

A

B

D

C

E

F
G H

Project back
to classical space

Projected quantum kernel (PQK)

g measures the geometric 
difference, e.g., betw.           
and           .

[1] A rigorous and robust quantum speed-up in supervised machine learning



Experiments

Fashion-MNIST

• MNIST is too easy (can predict 
well with one pixel) and overused.


• Fashion-MNIST is a harder 
alternative with the same format.


• We focus on binary classification      
   (dresses versus shirts)



How well it works in practice

E1

E2

E3

Data source: Fashion-MNIST → PCA → n components → length n vector →   xi

Label: (C) - Original Fashion-MNIST labels, 
           (Q) - Local magnetization after random Heisenberg evolution 



Experiments
(a) (b)

Dataset (Q, E2)

Dataset (C)Dataset (Q, E3)

Dataset (Q, E1)

1. Green line is classical ML. Other lines are quantum ML.

2. QK is quantum kernel ML model proposed in [Havlicek, Nature, 2019].

3. PQK is our proposed modified QML to increase geometric difference.
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Dataset (Q, E1)
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Experiments
PQK (E2): g - moderate PQK (E3): g - largePQK (E1): g - small

1. When geometric difference is large, data sets exist with large prediction advantage.

2. One can see significant advantage using quantum ML for these data sets.

Classical
Algorithm

(BPP)

Classical
ML

Algorithm
w/ data

Quantum Computation
(BQP)

Classical
Algorithm
+ Advice
(=P/poly)



Making sure things scale to 
large system size

https://www.tensorflow.org/quantum 

TF-Quantum Tutorial Implementation - https://www.tensorflow.org/quantum/tutorials/quantum_data 

Blog Post - https://blog.tensorflow.org/2020/11/characterizing-quantum-advantage-in.html 

Credit - Michael Broughton 

PQK (E2): g - moderate PQK (E3): g - largePQK (E1): g - small(a) (b)
Dataset (Q, E2)

Dataset (C)Dataset (Q, E3)

Dataset (Q, E1)

~ 1 petaflop/s peak, ~1 exaflop total

https://www.tensorflow.org/quantum/tutorials/quantum_data
https://blog.tensorflow.org/2020/11/characterizing-quantum-advantage-in.html
https://www.tensorflow.org/quantum/tutorials/quantum_data
https://blog.tensorflow.org/2020/11/characterizing-quantum-advantage-in.html
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Quantum ML is still 
computationally more powerful.



Conclusion
• Learning from classical data is powerful for achieving small 

average-case prediction error. 

• Data provide computational power that enables classical ML 
algorithms to become stronger than one expects. 

• Data challenges quantum advantage in ML problems. 

• But quantum advantage in prediction accuracy is still possible — 
more investigations are needed to fully claim quantum advantage.


